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Abstract
In this paper, we calculate, in the large N limit, the eigenvalue density of
an infinite product of random unitary matrices, each of them generated by a
random Hermitian matrix. This is equivalent to solving the unitary diffusion
generated by a Hamiltonian random in time. We find that the average eigenvalue
density is universal and depends only on the second moment of the generator of
the stochastic evolution. We find indications of critical behaviour (eigenvalue
spacing scaling like 1/N3/4) close to θ = π for a specific critical evolution
time tc.

PACS number: 02.10.Yn

1. Introduction

A key feature of the random matrix theory is that many properties of random matrix models
do not depend on the fine details of these models but only on some very general symmetry
properties and a very limited number of numerical coefficients (usually just a single coefficient
is enough). These universal properties facilitate the widespread applications of random matrix
models in various fields since one can use the models to learn something about the behaviour
of complex systems without knowing all the precise microscopic details of these systems. A
wide range of applications of matrix models can be found in a review article [1].

The simplest example of such behaviour is the eigenvalue density of a matrix with entries
independently distributed according to some probability distribution. Then the eigenvalue
density in the N → ∞ limit follows Wigner’s semicircle law with the scale set just by the
second moment of the distribution. All the dependence on other properties of the initial
probability distribution disappears. In this work, we will uncover a similar type of universality
in a different context.
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The aim of this paper is to study the properties of products of unitary random matrices in the
planar (large N) limit and focus on the case when the number of factors in the product becomes
infinite. This can be interpreted as a multiplicative diffusion process on the unitary group1.
A natural physical interpretation would be the quantum-mechanical evolution governed by a
Hamiltonian which changes randomly in time. Another possibility would be the modelling
of Wilson loops in the lattice gauge theory. In this paper, we will not further examine these
possible applications but rather concentrate on mathematically solving the model.

We show that the eigenvalue density exhibits universality properties, i.e. it only depends
on the second moment of the random Hamiltonian which generates the stochastic evolution.
But of course the resulting eigenvalue density is much more complex than the semicircle
law. We derive equations for the eigenvalue density, give an explicit expression for the lowest
moments and study the properties of the model close to a phase transition where the eigenvalue
support begins to cover the whole unit circle.

2. Multiplicative unitary diffusion

We consider the product of M unitary N × N random matrices Uk in the M,N → ∞ limit:

U = lim
M→∞

lim
N→∞

M∏
k=1

Uk (1)

where the Uk are generated by

Uk = eiεHk (2)

and where ε = √
t/M . Such a scaling is standard for diffusive processes and also works

very well for matrix-valued diffusion processes studied in [2, 3]. t is then a real parameter
corresponding to a ‘diffusive’ evolution time and the continuum limit M → ∞ exists. The
generators of the evolution Hk are N × N Hermitian matrices drawn from a probability
distribution

P(H) ∼ e−N tr V (H) (3)

where we assume that the first moment m1 = 〈
1
N

tr H
〉
vanishes, m1 = 0. We will show below

that the spectral properties of (1) depend only on the second moment m2 of the distribution (3)

m2 =
〈

1

N
tr H 2

〉
. (4)

The main aim of this paper is to find the eigenvalue distribution of the product (1)

ρ(θ, t) =
〈

1

N

N∑
j=1

δ(θ − θj )

〉
, (5)

where θj are the phases of the eigenvalues eiθj of U defined through (1).
In the next section, we will use free random variable methods to derive an equation from

which one can get ρ(θ, t). Sometimes we will omit the second argument but of course the
dependence on t will be there.

1 Recently, matrix-valued multiplicative diffusion has been considered for 2 × 2 real matrices in [2] and for infinite
Hermitian and complex matrices in [3].
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3. S-transform method

The main difficulty encountered in [3], when considering products of random matrices, was
the necessity to deal with non-Hermitian matrices and eigenvalues covering two-dimensional
regions of the complex plane. Here fortunately, since the product matrices are always unitary,
the eigenvalues lie on the unit circle and hence the eigenvalue density can be uniquely
reconstructed from just the knowledge of the moments, which are encoded in the asymptotic
expansion of the Green function2

G(z) =
∫ 2π

0

ρ(θ)

z − eiθ
dθ. (6)

Our aim now is to obtain the spectral density ρPROD(θ) of the product U = ∏M
k=1 Uk ,

equivalently the corresponding Green function GPROD(z), from the spectral density ρH (θ) for
the generator H.

To do that we use S-transforms introduced in [4]. Firstly, we define an auxiliary function
χ(z) through

1

χ
G

(
1

χ

)
− 1 = z. (7)

Then the S-transform is

S(z) = 1 + z

z
χ(z). (8)

Their main property is that the S-transform of a product of random matrix ensembles is a
product of S-transforms of the individual factors [4]. Note that since S(z) can be obtained
from the Green function G(z), it is defined (as is G(z)) after ensemble averaging. Before we
apply this setup to (1), let us note that putting together the two previous equations we arrive at
a functional relation satisfied by S and G:

1

zS
G

(
1 + z

z

1

S

)
= 1. (9)

In our case, all single matrix Green functions are the same since they come from the same
distribution, so we can write

SPROD(z) = lim
M→∞

M∏
i=1

Si(z) = lim
M→∞

(S1(z, ε))
M. (10)

Let us now find S1(z, ε). The phases of the eigenvalues of U1 = eiεH are distributed with
the density3

ρ1(θ, ε) = 1

ε
ρH

(
θ

ε

)
(11)

where ε = √
t/M . Since we will be interested in taking the limit M → ∞ we may perform an

expansion in ε. Inserting (11) and the definition (6) into (9) leads to an equation for S1(z, ε):∫
1

ε

ρH

(
θ
ε

)
1 + z − eiθ zS1(z, ε)

dθ = 1. (12)

2 For an explicit formula see equations (16) and (30).
3 ρH (x) ≡ 0 outside the eigenvalue support of H.
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From the form of (10), we see that we need to calculate S1 only to the order O(ε2) ∼ O(1/M).
Substituting u = θ/ε and expanding in the Taylor series in ε we obtain∫

ρH (u)

(
1 + iεuz +

(
−u2z2 − 1

2
u2z + sz

)
ε2 + O(ε3)

)
du = 1 (13)

where s = s(z) comes from the Taylor expansion4 S1(z, ε) = 1 + s(z)ε2 + O(ε3).
We may now calculate s(z)

s(z) = (z + 1/2)〈u2〉 ≡ (z + 1/2)m2. (14)

From (10), we may now obtain the S-transform for the product

SPROD = lim
M→∞

(S1(z, ε))
M |

ε=
√

t
M

= lim
M→∞

(
1 +

t

M
s(z) + O

((
t

M

)3/2
))M

= et (z+ 1
2 )m2 . (15)

This result shows that SPROD depends only on the second moment m2 of H. So in the limit
M → ∞, we obtain universal behaviour of the system independent of the spectral density
of the generator of the stochastic evolution H, as long as the first moment vanishes (no drift)
and the second moment is finite. It will be interesting to consider the cases where these
assumptions are violated which would lead to anomalous diffusion. We leave these problems
for future investigation.

The final step is to come back from SPROD to the Green function GPROD(z, t) (from now
on we drop the subscript). It is convenient to introduce an auxiliary function f (z, t) as

G(z, t) = 1 + f (t, z)

z
. (16)

It is easy to check that f fulfils an equation: f
(

1
χ(z)

) = z. This means that f and 1/χ are
functional inverses of each other, so the following relation 1/χ(f ) = z is also true. This
observation, together with the result (15) and the definition (8), leads us to the final equation

zf = (1 + f ) e−t (f + 1
2 )m2 . (17)

This equation encodes all the spectral properties of the unitary diffusion process (1). In
the next section, we will proceed to investigate some of its properties.

4. The dynamical properties of the unitary diffusion

In this section, we analyse the dynamical behaviour of the unitary matrix diffusion. For small
times t, the eigenvalues will be concentrated only in a small neighbourhood of θ = 0. For
longer times, the support of the eigenvalue density ρ will expand and when some critical time
tc is reached the eigenvalues will fill the whole circle. But of course the eigenvalue density ρ

will be nonuniform. In fact, we expect critical behaviour close to θ = π with a nonstandard
fractional eigenvalue spacing. Only later for t → ∞ will the eigenvalues become uniformly
spread over the whole unit circle. In figure 1, we show numerical results for the eigenvalue
density obtained by generating unitary matrices and compare it to the one extracted from (17)
(see below).

In this section, we will quantitatively analyse this behaviour.

4 Here, we used the assumption that the first moment of H vanishes.
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Figure 1. The time evolution of the spectral function ρ(θ, t) (numerical simulation). The following
pictures show ρ(θ, t) after a time t = 1, 250, 500 up to 2750 (we took m2 = 1/500). The ninth
graph shows the behaviour at the critical time t = tc when the gap in the spectrum vanishes. In the
simulations, we used products of 60 matrices, each of size 80 × 80.

4.1. The support of the eigenvalue distribution and the critical time tc

Although one cannot find an analytical formula for the eigenvalue density, one can analytically
find the edges of the eigenvalue support. These occur when the Green function has an infinte
derivative ∂zG = ∞. Differentiating (17) with respect to z gives

1 = −∂zf

f 2
(1 + m2tf + m2tf

2) e−t (f + 1
2 )m2 . (18)

So, the end points are determined through the solutions of the equation

1 + m2tf + m2tf
2 = 0. (19)

Once we know f , we can reconstruct the end points z using (17). The result is

zedge =
√

4 − m2t + i
√

m2t√
4 − m2t − i

√
m2t

e
i
2

√
m2t

√
4−m2t (20)

and its complex conjugate z∗
edge. When these two solutions are equal (zedge = z∗

edge = −1),
the eigenvalues will cover the whole circle. This will happen for the critical time

tc = 4

m2
. (21)
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Figure 2. The comparison of numerical simulations (dots) with analytical results (lines), for
n = 1, 2, 3, 4 and m2 = 1/500.

4.2. The moments of U

Another quantity which can be analytically calculated is the moments of U. The coefficients
of the auxiliary function f around z = ∞

f (z) =
∞∑

k=1

ak

zk
(22)

are indeed directly linked to the moments:

ak =
〈

1

N
tr Uk

〉
. (23)

So, inserting (22) into (17) allows us to find the moments iteratively. The expressions for the
lowest ones are

a1 = e− 1
2 m2t (24)

a2 = −e−m2t (−1 + m2t) (25)

a3 = 1
2 e− 3m2 t

2
(
2 − 6m2t + 3m2

2t
2
)

(26)

a4 = − 1
3 e−2m2t

(−3 + 18m2t − 24m2
2t

2 + 8m3
2t

3
)

(27)

a5 = 1
24 e− 5m2 t

2
(
24 − 240m2t + 600m2

2t
2 − 500m3

2t
3 + 125m4

2t
4
)
. (28)

In figure 2, we compare the formulae for the lowest four moments with numerical
simulations of the unitary matrix diffusion and find complete agreement.
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4.3. The eigenvalue density

Equation (17) allows us to directly reconstruct the Green function. However, it is also very
simple to recover the eigenvalue density. This follows from the observation that the moments
of U are just the Fourier coefficients of the eigenvalue density ρ(θ)〈

1

N
tr Uk

〉
=

∫ 2π

0
ρ(θ) eikθ . (29)

Using the relation of f to moments derived earlier, and the symmetry ρ(θ) = ρ(−θ) one
finally finds

ρ(θ) = − 1

2π
Re

(
1

2
+ f

)
. (30)

Equation (17) may be easily solved numerically. In figure 1, we show the resulting eigenvalue
density together with numerical simulations for various times t.

4.4. Critical behaviour at t = tc and level spacing

At t = tc, the edges of the eigenvalue support touch at z = −1. Typically, in such cases we
expect a new critical type of behaviour and nonstandard scaling of the eigenvalue spacing with
N. Let us now analyse this behaviour. Inserting t = tc and f = −1/2 + F into (17) we obtain

z = F + 1/2

F − 1/2
e−4F . (31)

To find the behaviour close to z = −1 (equivalent to θ = π ), we expand the left-hand side of
(31) in F and put z = −1 + iy to get

−1 + iy ≈ −1 − 16F 3

3
. (32)

Using the relation between f and the eigenvalue density (30), we thus find the behaviour close
to θ = π :

ρ(θ) ∼
{

1

2π

(
3

16

) 1
3

cos
π

6

}
· |θ − π | 1

3 . (33)

Such behaviour of the eigenvalue density leads to nonstandard eigenvalue spacing and
signifies the appearance of a new universal regime on the scale of eigenvalue spacing
(analogous to Airy universality and 1/N2/3 spacing on the edges of the eigenvalue distribution
of a generic Hermitian random matrix [5–8] in contrast to the standard 1/N spacing in the
classical Wigner–Dyson regime [9]).

In our case, the number of eigenvalues between π and � is approximately equal to
n ∼ N(� − π)4/3. Re-expressing � in terms of n shows that the eigenvalue spacing in
the vicinity of θ = π scales like 1/N3/4. A similar scaling appeared in a deterministic +
random Hermitian random matrix model [10] as well as in a certain class of chiral random
matrix models at finite temperature [11]. It would be interesting to compare these regimes
and/or try to apply the methods of [12] to the case at hand. We leave this problem for further
investigation.

We can also investigate the behaviour for times smaller than tc. We can repeat our
calculations for the time tε = 4−ε2

m2
< tc. We can calculate the corresponding fε at the edge of

the spectrum from equation (19) with t = tε. After that we substitute f = fε + F and obtain
z from (17). After expanding in the Taylor series with respect to ε and F, we get the result

z = −1 + 4iεF 2 − 16F 3

3
. (34)
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We also expand zedge for t = tε in ε and finally obtain

z − zedge = 4iεF 2 − 16F 3

3
. (35)

For ε 
= 0 (t < tc), the edge of the spectrum behaves like the edge of the standard Wigner
semicircle, i.e. like x1/2. Only in the limit ε → 0, which corresponds to t = tc, do we obtain
critical behaviour like x1/3.

5. Discussion

In this paper, we considered the multiplicative unitary matrix diffusion generated by random
Hermitian matrices. We found the eigenvalue density as a function of the evolution time in the
large N limit using S-transform methods. The eigenvalue distribution turns out to be universal
and depends only on the second moment of the random Hermitian matrix which generates the
diffusion process.

We found that at a critical time of evolution t = tc, the eigenvalues start to fill the whole
unit circle, and close to θ = π a nonstandard eigenalue spacing ∼1/N3/4 sets in which
signifies the appearance of a new critical regime.

There are various further issues that one could investigate. Firstly, relaxing the assumption
of the existence of the second moment might lead to defining anomalous diffusion processes.
Secondly, it would be interesting to study microscopic properties of these unitary matrices;
however, in order to do that new methods have to be developed. Thirdly, a more detailed
investigation of the critical behaviour at t = tc close to θ = π would be interesting and last
but not the least the application of these results to some physical situations.
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